Teacher notes

Topic A

A peculiar problem for motion under gravity
In this problem we will take $g=10 \mathrm{~ms}^{-2}$.

A ball is projected vertically upwards with an initial speed u from the edge of a cliff at a height H above sea level. At a time of $\tau=1 \mathrm{~s}$ later an identical ball is dropped from the edge of the cliff. Both balls reach the sea at the same time.

What is H ?

What are the possible values of u ?

For the red ball: it reaches the ground at time t given by $-H=u t-\frac{1}{2} g t^{2}$.

For the blue ball: it reaches the ground at time t given by $-H=-\frac{1}{2} g(t-\tau)^{2}$.

Hence

IB Physics: K.A. Tsokos

$$
\begin{aligned}
u t-\frac{1}{2} g t^{2} & =-\frac{1}{2} g(t-\tau)^{2} \\
u t-\frac{1}{2} g t^{2} & =-\frac{1}{2} g t^{2}+g t \tau-\frac{g \tau^{2}}{2} \\
u t & =+g t \tau-\frac{g \tau^{2}}{2} \\
t & =\frac{1}{2} g \tau^{2}
\end{aligned}
$$

This implies that
$-H=u t-\frac{1}{2} g t^{2}$
$H=-u \times \frac{1}{2} \frac{g \tau^{2}}{g \tau-u}+\frac{1}{2} g\left(\frac{1}{2} \times \frac{g \tau^{2}}{g \tau-u}\right)^{2}$
$H=\frac{g^{3} \tau^{4}-4 u g \tau^{2}(g \tau-u)}{8(g \tau-u)^{2}}=\frac{g^{3} \tau^{4}-4 u g^{2} \tau^{3}+4 u^{2} g \tau^{2}}{8(g \tau-u)^{2}}=\frac{g \tau^{2}\left(g^{2} \tau^{2}-4 u g \tau+4 u^{2}\right)}{8(g \tau-u)^{2}}$
$H=\frac{g \tau^{2}(g \tau-2 u)^{2}}{8(g \tau-u)^{2}}$
So we have: time to hit the ground is $t=\frac{1}{2} \frac{g \tau^{2}}{g \tau-u}$ and the height is given by $H=\frac{g \tau^{2}(g \tau-2 u)^{2}}{8(g \tau-u)^{2}}$.
But, the time has to be positive and so $g \tau-u>0$ which implies $u<g \tau$. There is a maximum speed involved, $u_{\max }=g \tau$. There is also a minimum speed involved: if the launch speed u is too low the ball will come back to its initial position in a time less than τ seconds and so the two balls cannot reach the ground at the same time. This means $u>\frac{g \tau}{2}$.

For $\tau=1 \mathrm{~s}$ we have the following graphs of H versus u and t versus u :

IB Physics: K.A. Tsokos

The height gets bigger and bigger as the speed approaches $u_{\max }=g \tau=10 \mathrm{~ms}^{-1}$.

The height has to be 0 when the speed approaches the minimum of $u_{\min }=\frac{g \tau}{2}=5.0 \mathrm{~ms}^{-1}$.

For any speed between $u_{\text {min }}$ and $u_{\text {max }}$ the height is given by the formula we derived above.

To see what happens if the launch speed u is outside these limits consider the cases $u=2.0 \mathrm{~ms}^{-1}$ and $u=20 \mathrm{~ms}^{-1}$.

For $u=2.0 \mathrm{~ms}^{-1}$ the red ball reaches maximum height at 0.2 s and returns to its initial place at 0.4 s . It then continues towards the sea before the blue ball starts to move. The two balls will not reach the sea at the same time no matter what H is.

For $u=20 \mathrm{~ms}^{-1}$ the red ball reaches maximum height at 2 s and returns to its initial place at 4 s . The blue ball starts moving before the red ball reaches max height.

IB Physics: K.A. Tsokos

There is no way they can reach the sea at the same time no matter what the height H is.

